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ABSTRACT

Light Management in Nanostructures: Nanowire Solar Cells and Optical Epitaxial Growth

Report Title

This dissertation work studies the use of nanostructures to control the flow of

light in two application areas: photovoltaics and material self-assembly, which are

discussed in I and Part II, respectively.



The work in photovoltaics focuses on designing high-efficiency nanowire array

solar cells. Nanowire arrays are a promising candidate for the next generation

of low-cost, high efficiency, flexible photovoltaic cells. Nanowire structures relax

the lattice-matching constraints and allow the usage of materials with different

lattice constants for multijunction cells. This opens up a much wider range of

materials choices than for traditional, planar cells. The design of a high-efficiency

cell involves two factors: optical absorption and carrier collection. In this dissertation,

I first use the full-wave electromagnetic simulation to investigate the

absorption properties of periodic nanowire arrays and provide the optimal designs

in a single junction and a tandem wire-on-substrate cell configurations. I then

study strategies for optimal carrier collection by finite-element method electronic

device simulations. I optimize the p-n junction geometry, doping parameters, and

surface passivation scheme. This work not only establishes the fundamental limits

of nanowire solar cells’ designs but also provides practical guidelines and solutions

for high performance nanowire solar cell devices.



The work of material self-assembly is based on the light-assisted, templated

self-assembly (LATS) technique developed in our group. In this method, we shine

light through a photonic crystal (or template) to create an array of optical traps.

The traps drive the self-assembly of nanoparticles into regular patterns. In this

dissertation work, I discover the crucial effect of inter-particle interactions on the

pattern formation of metallic particles in the LATS system. I envision the analogy

between the optical assembly of nanoparticles and atomic level epitaxial growth

and suggest that the system can be viewed as “optical eptaxial growth”. I develop

the modeling and simulation technique to explain and predict experimental results.

Such model leads to the first successful demonstration of the optical assembly of

a 2D periodic gold nanoparticle array.
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Abstract

This dissertation work studies the use of nanostructures to control the flow of

light in two application areas: photovoltaics and material self-assembly, which are

discussed in I and Part II, respectively.

The work in photovoltaics focuses on designing high-efficiency nanowire array

solar cells. Nanowire arrays are a promising candidate for the next generation

of low-cost, high efficiency, flexible photovoltaic cells. Nanowire structures relax

the lattice-matching constraints and allow the usage of materials with different

lattice constants for multijunction cells. This opens up a much wider range of

materials choices than for traditional, planar cells. The design of a high-efficiency

cell involves two factors: optical absorption and carrier collection. In this dis-

sertation, I first use the full-wave electromagnetic simulation to investigate the

absorption properties of periodic nanowire arrays and provide the optimal designs

in a single junction and a tandem wire-on-substrate cell configurations. I then

study strategies for optimal carrier collection by finite-element method electronic

device simulations. I optimize the p-n junction geometry, doping parameters, and

surface passivation scheme. This work not only establishes the fundamental limits

of nanowire solar cells’ designs but also provides practical guidelines and solutions

for high performance nanowire solar cell devices.
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The work of material self-assembly is based on the light-assisted, templated

self-assembly (LATS) technique developed in our group. In this method, we shine

light through a photonic crystal (or template) to create an array of optical traps.

The traps drive the self-assembly of nanoparticles into regular patterns. In this

dissertation work, I discover the crucial effect of inter-particle interactions on the

pattern formation of metallic particles in the LATS system. I envision the analogy

between the optical assembly of nanoparticles and atomic level epitaxial growth

and suggest that the system can be viewed as “optical eptaxial growth”. I develop

the modeling and simulation technique to explain and predict experimental results.

Such model leads to the first successful demonstration of the optical assembly of

a 2D periodic gold nanoparticle array.
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Part I

Nanowire Solar Cells
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Chapter 1

Introduction

1.1 Solar energy and photovoltaic cells

Energy is one of the most important technical issues nowadays. The power

generation nowadays mainly relies on the burning of fossil fuels, which emits large

amount of carbon dioxide and other pollution. More importantly, fossil fuel will

eventually run out in the near future. In order to make sustainable development of

the civilization and cause less harm to the environment, new sources of substitute

clean energy are required.

Solar energy is an important alternative energy source to fossil fuel. Solar

energy is the planet’s most plentiful and widely distributed renewable energy

source. All wind, fossil fuel, hydro and biomass energy have their origins in sun-

light. The earth receives 120 petawatts (PW =1015 W) of incoming solar radiation

on the surface [4], which means the solar energy captured by the Earth in 80

minutes equals to the annual global energy consumption in the year 2012 [5].

A range of technologies have been developed to harness the abundant solar

energy, such as solar heating, solar thermal energy, artificial photosynthesis and

solar photovoltaics [6]. Solar photovoltaics technology is one of the most promising

of them, which directly converts sunlight to electricity without any moving parts

or environmental emissions. Solar photovoltaic power plants can be deployed com-

paratively faster and easier than other renewable energy power plants such as wind,

hydro and solar thermal power. Moreover, since arid or semi-arid areas usually
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are more suitable for building solar power stations, the occupation of large areas

of land by large utility stations will not be a serious problem.

Despite all the technological advantages that a photovoltaics system has and

dramatic market growth, total PV power is now around 138.9 GW (data from 2013

[7]), which is still small relative to the world’s 5550 GW of installed electric gen-

eration capacity (2.55% for data from 2012 [8]). The most critical issue becomes

economics. Over the past 20 years, the photovoltaic power industry has experi-

enced drastic technology advances and price drops, however, the levelized cost of

energy (LCOE) for PV plants is still above the range of conventional generation

options and other renewable generation options such as wind plants, even taking

into account the impact of the U.S. federal 30% investment tax credit [9].

The difficulty has always been converting solar energy in an efficient and cost-

effective way. On one hand, the advance of technologies leads to very high efficiency

solar cell devices with efficiencies very close to the Shockley-Queisser detailed bal-

ance limit. More sophisticated multiple junction solar cells have efficiencies far

beyond the SQ limit. However, most high efficiency devices rely on expensive

crystalline materials. On the other hand, emerging thin-film technologies pro-

duce lower cost but lower energy conversion efficiency. The lower efficiency results

in higher installation cost, with the result that there is near cost parity at the

installed-system level. So far, a solar photovoltaics system with high efficiency at

low cost, which can challenge the LCOE of conventional generation options, has

not been achieved.
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1.2 Nanostructured solar cells

The nanostructured solar cells discussed in this dissertation are nanowire array

solar cells, shown in Figure 1.1. They are made of a periodic array of semiconductor

nanowires. Both the diameter and spacing between wires are below 1 micrometer.

Because of the extended periodic structure, the device is fully compatible with

current solar panels for large area solar energy harvesting.

Figure 1.1: Rendering of a vertically-aligned semiconductor nanowire array.

The nanowire structure has been studied extensively in recent years, and it is

advantageous for photovoltaic applications in several aspects. Firstly, by proper

design, the nanowire structure can absorb the same amount or even a larger amount

of light than a planar structure while using much less material, which greatly

reduces the material and process cost. Secondly, the nanowire structure can relax

the atomic lattice-matching constraints, enabling wider and more optimal material

choices for multi-junction solar cells and yielding a higher efficiency. Non-lattice-

matched growth of nanowire arrays also makes possible the growth of high quality
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optoelectronic material such as gallium arsenide on a relative cheaper substrate

such as silicon. Thirdly, the ultra-thin nanowire array structures are flexible and

stretchable, which can enable novel applications in addition to the conventional

solar power plant electricity generation.

Designing and modeling these miniature sub-micrometer nanowire solar cell

devices are challenging. Optically, the sub-wavelength structure has intriguing and

counter-intuitive properties which cannot be explained by the traditional ray-optics

or effective-medium modeling approach. Full-wave electromagnetic simulation is

required to get accurate results. Electrically, the nanowires are inherently three

dimensional structures, different from the traditional planar, one-dimensional cells.

This opens up larger design parameter space. Furthermore, nanowire structures

have a much larger surface-to-volume ratio. Surface effects must be considered

carefully, and a robust surface passivation scheme is required for high performance

devices.

1.3 Outline of PART I

In the first part of the dissertation, I use accurate electromagnetic simulations

coupled with electrical device simulations to provide design guidelines for nanowire

array solar cells. Both the theoretical limit of perfect carrier collection and practical

designs that consider non-ideal bulk and surface properties are discussed.

Chapter 2 focuses on a systematic study of the optical properties of semi-

conductor nanowire arrays made of various semiconductor materials for photo-

voltaic applications. It is shown that by optimizing the structural parameters, the

nanowire array can absorb more sunlight than an equally-thick thin film made of
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the same material. The height dependence of the absorption is also discussed,

which is important for minimizing the material usage.

Chapter 3 presents the study of a III-V nanowire array on silicon, double-

junction solar cell. Such a tandem solar cell is an ideal proof-of-concept model and

key intermediate goal towards high efficiency, low cost, multijunction nanowire-

array solar cells on cheap and lattice-mismatched substrates. In this chapter, I

address the importance of current matching in nanowire-array-on-silicon solar cells

and how to tune the parameter of the nanowire array to achieve current matching.

The electrical consideration of the nanowire solar cell design is also discussed. The

junction position and geometry affect the efficiency strongly. The radial junction

outperforms the axial junction geometry in the case with bad surface quality.

To solve the issue of the inferior performance of the axial junction nanowire

solar cells, which are essential building blocks for high efficiency multi-junction

nanowire solar cells, in Chapter 4, I propose a high performance and robust surface

passivation design to mitigate undesired surface effects.
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Chapter 2

Broadband absorption of

semiconductor nanowire arrays

for photovoltaic applications

A version of the results in this chapter was published as Ref. [10].

2.1 Introduction

Semiconductor nanowire solar cells are promising candidates for next-

generation, thin-film photovoltaic devices due to their attractive anti-reflection and

light-trapping properties. Recent experimental work has demonstrated vertically

aligned semiconductor nanowire arrays in silicon [11, 12, 13, 14, 15, 16, 17, 18, 19],

germanium [20], various direct band gap materials [21, 22, 23, 24, 25, 26, 27, 28],

and combined systems [29, 30, 31]. Nanowire arrays can be fabricated by either

top-down [11, 12, 32] or bottom-up [13, 20, 22, 31] methodologies. By using

different patterning techniques [20, 24, 25, 27, 33] regular arrays of nanowires

have been achieved. Junctions have been made between semiconductor nanowires

and substrate [22] and between the core and shell of semiconductor nanowires

[23, 33]. Experiments on hybrid nanowire/polymer systems have also been con-

ducted [34, 35].
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In this section, we use electromagnetic simulations to map out the limiting

efficiencies of nanowire solar cells. We focus on structures for which the nanowires

themselves function as the broadband absorber. Ideally, a photovoltaic cell will

absorb as large a fraction of incident photons as possible over the entire solar

spectrum. Previous work has shown that the structural parameters of the nanowire

array strongly influence the broadband absorption [36, 37]. Given proper design,

light-trapping effects yield high broadband absorption, even for nanowire heights

shorter than the bulk absorption length. Specifically, work from my group has

shown that the ultimate efficiency of an optimized silicon nanowire array exceeds

that of an equal-height thin film, even though it contains less absorptive material

[37]. Similar optimization work has been carried out for silicon nanowires on silicon

thin films [38], as well as for InP/InAs [39], InP [40] and GaAs/AlGaAs nanowire

arrays [41].

However, previous work has been restricted either to a fixed height or to a very

limited height range. The dependence of broadband absorption on height has not

been determined. It is important to determine the extent to which light trapping

can be used to minimize material usage while maintaining acceptably high photo-

voltaic efficiency. Material usage can have important implications for the cost of

a process. For bottom-up growth methods such as MOCVD, for example, it is of

particular interest to know what heights are sufficient to guarantee acceptable effi-

ciencies, given the potentially time-consuming and expensive nature of the growth

process. For photovoltaic space applications, the material volume affects the total

weight, which correlates with the launch cost. From a scientific standpoint, it is of

interest to determine how fast the efficiency degrades as the height of a nanowire

array is reduced, in order to determine whether optimized structures will allow

approach to an ‘ultra-thin’ film limit.
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In this section, we systematically study the broadband absorption of vertically-

aligned nanowire arrays made of six common photovoltaic materials. For each

material, we study how the ultimate efficiency depends on the height of the array.

At each value of height, we optimize the structural parameters of the array to max-

imize the broadband absorption. Thus, the results we present concisely describe

the trade-offs between material usage and maximum achievable efficiency in semi-

conductor nanowire array solar cells. We further compare the optimized nanowire

arrays to thin films of the same height and show that for all six materials, and over

the entire range of heights tested (100 nm - 100 µm), the ultimate efficiencies of the

arrays exceed those of equal-height thin films. Our results suggest that nanowire

array solar cells hold strong potential for the development of next-generation, thin-

film solar cells.

2.2 Methods

Figure 2.1 shows a schematic of a vertically-aligned semiconductor nanowire

array. The array is illuminated by sunlight from the top, as indicated by the red

arrow in Figure 2.1(a). The electric field of the incident light is polarized in either

the x- or the y-direction. As shown in Figure 2.1(b), nanowires with diameter d

are arranged in a hexagonal lattice with lattice constant a.

We consider nanowire arrays composed of one of six common photovoltaic mate-

rials. Among the materials considered, silicon and germanium are indirect band

gap materials, while GaAs, InP, In0.48Ga0.52P, and CdTe are direct band gap mate-

rials. The optical constants (refractive indices and absorption lengths) are taken

from the literature: Si [42], Ge [42], GaAs [42], InP [43], In0.48Ga0.52P [44], and

9



d

a

a

a

h

a b

x

y

z

x

y

Figure 2.1: Schematic of a vertically-aligned semiconductor nanowire array. (a)
Perspective view. (b) Cross-sectional view.

CdTe [45] (Figure 2.2). Si has a relatively large absorption length in the 400-

1100 nm wavelength range compared to the other materials.

a b

Figure 2.2: Materials’ optical properties (a) Refractive indices (b) Absorption
lengths.

We use the ISU-TMM simulation package [46, 47], an implementation of the

transfer matrix method [48, 49], to calculate the broadband absorption of semi-

conductor nanowire arrays. The software can determine the wavelength-dependent
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transmittance T (λ) and reflectance R(λ). The absorptance spectrum A(λ) is

obtained from the relation A(λ) = 1 − T (λ) − R(λ). We average the results

for x- and y-polarized incident light. The spectral resolution is chosen to be 5 nm

in the wavelength range of interest.

We use the ultimate efficiency [50] to quantify the broadband absorption, as in

previous work [36, 37]. The ultimate efficiency is given by

η =
∫ λg

300 nm I(λ)A(λ) λ
λg

dλ∫ 4000 nm
300 nm I(λ)dλ

(2.1)

where λ is the wavelength, and λg is the wavelength corresponding to the band

gap of the semiconductor. I(λ) is the ASTM AM1.5 solar spectral irradiance [1],

which is plotted as a black line in Figure 2.3. A(λ) is the absorption spectrum.

We set the lower limit of integration to 300 nm in Equation 2.1 because the solar

irradiance is negligible below this value. The ultimate efficiency is an upper bound

on the achievable efficiency of a solar cell, assuming that each absorbed photon

with energy greater than the band gap produces exactly one electron-hole pair at

the energy of the gap, Eg = hc/λg. The ultimate efficiency can be related to the

maximum short circuit current by assuming perfect carrier collection efficiency, i.e.,

every photogenerated carrier can reach the electrodes and contribute to the pho-

tocurrent. Within this approximation, we do not explicitly consider the junction

geometry. In this case,

Jsc =
∫ λg

300 nm
I(λ)A(λ)eλ

hc
dλ = η

eλg
hc

∫ 4000 nm

300 nm
I(λ)dλ (2.2)

In the case of perfect absorption, we may set A(λ) = 1 in Equation 2.1 to obtain

the limiting value of ultimate efficiency ηmax [50]. The value of ηmax is plotted as
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Figure 2.3: Direct+circumsolar spectral irradiance AM1.5 (black line), reprinted
from Ref. [1], and the perfect-absorption limit of the ultimate efficiency (blue line).

a function of Eg in Figure 2.3 and obtains a maximum of 49% for a band gap of

1.12 eV.

For nanowire arrays, as for any realistic structure, the ultimate efficiency will

always be less than ηmax due to incomplete absorption. Below, we determine the

extent to which structural optimization of a nanowire array can yield efficiency

values approaching the perfect-absorption limit. Moreover, we determine the opti-

mized ultimate efficiency as a function of nanowire height.

We optimize the ultimate efficiencies of nanowire arrays with respect to the

structural parameters as follows. For fixed nanowire height h, we vary the lattice

constant a and the ratio of the lattice constant to diameter, a/d. Seven height

values were used: 100 nm, 300 nm, 1 µm, 3 µm, 10 µm, 30 µm and 100 µm.

Figure 2.4 shows an example of a parameter sweep for 3 µm long silicon nanowire

arrays. The lattice constant was varied from 200 to 1000 nm in steps of 100 nm

and the a/d parameter was varied from 1 (for which the nanowires touch) to 4
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in steps of 0.2. The value of the ultimate efficiency is given by the color bar and

depends strongly on the structural parameters. In this specific case, the ultimate

efficiency varies from a minimum of 5% to a maximum of 26% in the parameter

space we consider. Below, we refer to the maximum value of ultimate efficiency,

optimized over a and a/d for a particular material and nanowire height, as the

optimized ultimate efficiency.
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Figure 2.4: Optimization of the ultimate efficiency with respect to the structural
parameters for a silicon nanowire array of 3 µm height.

2.3 Results and discussion

In Figure 2.5(a), we plot the optimized ultimate efficiency as a function of

height for all six materials considered. For each material, the optimized ultimate

efficiency increases with increasing height of the nanowire array. For the direct

band gap materials (GaAs, InP, InGaP, CdTe), the ultimate efficiency increases

quickly and is relatively flat for heights above 5 µm. For Si, which is an indirect

band gap material, the ultimate efficiency slowly increases over the entire range

shown (up to 100 µm). The data for Ge represent an intermediate case.
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In Figure 2.5(b), we plot the optimized ultimate efficiency as a function of

bandgap energy. The black solid line is the perfect-absorption limit of ultimate

efficiency (ηmax), identical to the blue line in Figure 2.3. The colored symbols

represent identical data to Figure 2.5(a). The data for each set of nanowire arrays

are aligned to the bandgap energy of the constituent material. Different colors

represent different heights of the nanowire array. From this plot, the saturation

behavior of the ultimate efficiency may be clearly observed. For direct band gap

materials, the optimized ultimate efficiency approaches the perfect-absorption limit

much more quickly than for indirect band gap materials. For the materials studied,

an optimized nanowire array of 3 µm height provides an ultimate efficiency that is

>92% of the perfect-absorption limit for InP, GaAs, CdTe, and GaInP, while only

53% for Si and 78% for Ge.

a b

Figure 2.5: Optimized ultimate efficiencies for nanowire arrays composed of differ-
ent materials: (a) shown as a function of array height; (b) shown as a function of
the bandgap energy of the material.

Each data point in Figures 2.5(a) and (b) is obtained by optimizing the struc-

tural parameters of the nanowire array to maximize the ultimate efficiency. The
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optimal values of a and a/d are shown in Figures 2.6(a) and (b), respectively. Dif-

ferent color lines represent different materials. From Figure 2.6(a), we observe that

there is no obvious trend in the optimal lattice constant. However, most values

are comparable to the wavelength of visible light (∼ 400− 700 nm). Figure 2.6(b)

shows that the optimal value of a/d increases with increasing nanowire height.

Larger values of a/d correspond to sparser arrays. Intuitively, as the nanowire

height increases, it becomes comparable to or larger than the absorption length in

the material. In this limit that the nanowire height exceeds the absorption length

over the whole solar spectrum, the ultimate efficiency will be maximized by min-

imizing the reflection from the top surface, which may be achieved by increasing

a/d. From Figure 2.6(b), it may also be observed that the optimal value of a/d

increases more quickly with length for direct band gap materials than for Si and

Ge.

a b

Figure 2.6: Optimal structural parameters for different heights of different mate-
rials: (a) lattice constant; (b)a/d ratio.

In Figure 2.7, we compare the performance of optimal nanowire arrays to thin

films of the same height. The plot shows that in the entire height range we con-

sider, optimal nanowire arrays have higher ultimate efficiencies than their thin-film
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counterparts. This holds true even though the nanowires contain a smaller volume

of absorbing materials than the thin films. Nanowire structures tend to have a

lower reflection from their top surface than a thin film. Moreover, the nanowires

can also couple normally incident light into modes that propagate in the plane of

the array, a form of light trapping.

Above, we have considered free-standing nanowire arrays in air. The methods

we use can be straightforwardly adapted to model particular choices of substrate

material, contact geometries and materials. As one example of a more complex

geometry, we consider the effect of a substrate on the ultimate efficiency. We choose

GaAs as a representative direct band gap material and compare three possible

substrate choices (no substrate, GaAs substrate, and glass substrate) using FDTD

calculations. We assume that the solar cell is designed such that photogenerated

carriers are collected only from the nanowire region. Hence, we calculate the

ultimate efficiency using A(λ) for the nanowire region alone. Absorption spectra,

A(λ), are obtained from the FDTD simulation by monitoring the flux difference

between flux planes located above and below the nanowire array. We vary the

height of the nanowire array as in the calculations above. For each height, we use

the optimal structural parameters from Figure 2.6, which were obtained for the

free-floating structure.

The black line in Figure 2.8 shows the ultimate efficiency of GaAs nanowire

arrays without a substrate, corresponding to the green dotted line in Figure 2.5(a).

The red and blue lines represent the ultimate efficiencies achieved for a GaAs and

a glass substrate (n = 1.55) underneath the nanowires, respectively. As one would

expect, the glass substrate has a smaller effect on the ultimate efficiency than

the higher index, GaAs substrate. Moreover, we observe that when the height

of the nanowire array is longer than about 3 µm, the effect of a glass or GaAs

16



Figure 2.7: Comparison of the ultimate efficiencies of optimized (a) Si, (b) Ge,
(c) GaAs, (d) InP, (e) InGaP, and (f) CdTe nanowire arrays with the ultimate
efficiencies of thin films made of the same material and of the same height.
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